您的位置:首页  > 论文页面

一维自旋相关势的散射问题

发表时间:2009-02-15  浏览量:1714  下载量:748
全部作者: 张鹏飞,刘键恒,阮图南,何多慧
作者单位: 中国科学技术大学国家同步辐射室验室;中国高等科学技术中心
摘 要: 研究自旋1/2粒子在自旋相关势场中的一维散射问题。基于自旋为h-/2的非相对论粒子满足Pauli方程,对自旋相关的阶梯势、δ-位势以及方位势三种可以严格求解的势场进行计算,并得到散射解。对于所讨论的三种位势,均就不同极化方向的纯态情形作了计算,显式表明散射结果对入射束极化状态的依赖关系。定义自旋透射矩阵、自旋反射矩阵以统一描述入射束经势场散射后的透射束与反射束极化状态的变化,进而根据纯态情形的解得到由自旋密度算符ρ描述的一般极化混合态单能入射束的散射结果,给出了反射系数和透射系数,并作了相关讨论。
关 键 词: 量子力学;自旋1/2粒子;自旋相关势;一维散射
Title: One-dimensional scattering by spin-dependent potentials
Author: ZHANG Pengfei, LIU Jianheng, RUAN Tunan, HE Duohui
Organization: National Synchrotron Radiation Laboratory University of Science andTechnology of China; China Center of Advanced Science and Technology (World Laboratory)
Abstract: The problem of one-dimensional scattering of a particle with spin 1/2 by the spin-dependent potentials is investigated. Based on the so called Pauli equation for a particle with spin h-/2 (or Schr錸dinger equation for a particle with spin half), in three cases of spin-dependent ladder, δ- and square potentials, calculations are performed fully, with the respective scattering solutions. For all the three cases with different potential each, various calculations are performed with incident beams of particles at different pure state of polarization, and explicitly manifested the polarization dependence of the results. By introducing the spin transmission matrix and spin reflection matrix, the change of the polarization states of the transmission or reflection beam with respect to the polarization state of the incident beams is generally described. Further, from the so derived solution for the pure state of polarization, the results for scattering with the incident beams of particles at general mixed state of polarization are obtained. The reflection coefficient and transmission coefficient are given, and some related discussions are made.
Key words: quantum mechanics; spin 1/2 particle; spin-dependent potential; one-dimensional scattering
发表期数: 2009年2月第3期
引用格式: 张鹏飞,刘键恒,阮图南,等. 一维自旋相关势的散射问题[J]. 中国科技论文在线精品论文,2009,2(3):254-261.
 
3 评论数 0
暂无评论
友情链接