您的位置:首页 > 论文页面
齐次Moran集积集的Packing维数
发表时间:2009-01-15 浏览量:2368 下载量:955
| 全部作者: | 黄精华 |
| 作者单位: | 中国地质大学数学与物理学院 |
| 摘 要: | 分形积集的维数是分形几何研究中的重要内容。本文讨论了一类齐次Moran集积集的Packing维数。设(I, {nk}k≥1, {ck}k≥1)是由I, {nk}k≥1, {ck}k≥1确定的Moran集类,利用Moran集的齐次结构,运用自然覆盖法的特别估计法,对E,F∈在一定条件下,确定了积集E×F的Packing维数公式,进一步得到:积集E×F的Packing维数严格小于集E,F的Packing维数之和。 |
| 关 键 词: | 分形几何;齐次Moran集;齐次Cantor集;偏齐次Cantor集;Packing维数 |
| Title: | Packing dimension of product sets for homogeneous Moran sets |
| Author: | HUANG Jinghua |
| Organization: | School of Mathematics and Physics, China University of Geosciences |
| Abstract: | It is important to research the dimension of product sets in fractal geometry. The paper discusses the Packing dimension of product sets for homogeneous Moran sets. Let (I, {nk}k≥1, {ck}k≥1) denote the Moran collection determined by the closed interval I, the positive integer series {nk}k≥1, and a positive real series {ck}k≥1. Use the homogeneous structure of Moran sets and a special method of natrual covering to estimate the Packing dimension formula for E×F, where E, F∈ is satisfied with some conditions. And the Packing dimension of E×F is strictly less than the sum of Packing dimensions for E, F. |
| Key words: | fractal geometry; homogeneous Moran sets; homogeneous Cantor sets; partial homogeneous Cantor sets; Packing dimension |
| 发表期数: | 2009年1月第1期 |
| 引用格式: | 黄精华. 齐次Moran集积集的Packing维数[J]. 中国科技论文在线精品论文,2009,2(1):48-53. |
请您登录
暂无评论
下载全文
多维论文