您的位置:首页 > 论文页面
基于问题分解的卫星测控资源蚁群优化调度方法
发表时间:2009-10-31 浏览量:1827 下载量:831
全部作者: | 张娜,柯良军,冯祖仁 |
作者单位: | 西安交通大学机械制造系统工程国家重点实验室 |
摘 要: | 针对卫星测控资源优化调度问题,以卫星可见弧段为元素建立一种新的加权独立集模型,并对一种多空间蚁群优化算法进行求解。该算法将原问题分解为多个具有约束关系的子优化问题,从而问题的搜索空间被分为多个子空间。算法中的蚁群以随机跳跃的方式选择某子问题的优化空间进行解的构建,并引入协调机制处理其间的约束关系。算法采用了合适的信息素模式及有效的启发信息。实验结果表明:该算法能够有效避免陷入局部优解,生成最优的调度计划,提高测控网的利用效率。 |
关 键 词: | 人工智能;卫星测控资源;优化调度;独立集;蚁群优化 |
Title: | A problem decomposition-based ant colony optimization for satellite TT&C resource scheduling problem |
Author: | ZHANG Na, KE Liangjun, FENG Zuren |
Organization: | State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University |
Abstract: | A model of weighted independent set is developed for satellite tracking, telemetry and command (TT&C) resource optimization scheduling problem. A novel ACO, called multi-space ant colony optimization (MsACO), is proposed to solve it. The original problem is separated into several mutual-restrained sub-problems, and consequently the search space is divided into several sub-spaces. The ants in the algorithm skip randomly into one sub-problem’s space to build solutions. A corresponding mechanism is introduced to deal with the constraints between them. In addition, this algorithm adopts suitable pheromone trail mode and effective heuristic information. The experiment results demonstrate that MsACO can avoid the local optimum efficiently, generate optimal schedules and improve the utility of the TT&C resources. |
Key words: | artificial intelligence; satellite tracking, telemetry and command resources; optimization scheduling; independent set; ant colony optimization |
发表期数: | 2009年10月第20期 |
引用格式: | 张娜,柯良军,冯祖仁. 基于问题分解的卫星测控资源蚁群优化调度方法[J]. 中国科技论文在线精品论文,2009,2(20):2192-2199. |
0
评论数 0
请您登录
暂无评论