您的位置:首页 > 论文页面
利用GRG解一类非线性二层规划
发表时间:2010-01-15 浏览量:2569 下载量:1031
全部作者: | 黄银珠,张圣贵 |
作者单位: | 福建师范大学数学与计算机科学学院 |
摘 要: | 主要研究一类下层是凸的二层规划的一种求解算法。在下层是凸的情况下,可以将下层用卡罗需库恩塔克(Karush-Kuhn-Tucker, KKT)条件代替,从而把原二层规划转化为单层非线性规划,进而借用广义简约梯度(general reduced gradient, GRG),提出一种简单有效的下降算法来求解该规划,并通过数值算例的计算结果说明了该算法的可行性和有效性。 |
关 键 词: | 应用数学;二层规划;卡罗需库恩塔克条件;广义简约梯度;下降方法 |
Title: | A new computational method for a class of nonlinear bilevel programming by use of GRG |
Author: | HUANG Yinzhu, ZHANG Shenggui |
Organization: | School of Mathematics and Computer Science, Fujian Normal University |
Abstract: | This paper discusses a class of nonlinear bilevel programming in which the second level is convex. The bilevel programming is transformed into a single nonlinear programming by replacing the second level with its KKT condition, and with the help of general reduced gradient (GRG), a simple descent algorithm is given for it. The computational results of the examples show the feasibility and efficiency of the algorithm. |
Key words: | applied mathematics; bilevel programming; Karush-Kuhn-Tucker condition; general reduced gradient; descent direction |
发表期数: | 2010年1月第1期 |
引用格式: | 黄银珠,张圣贵. 利用GRG解一类非线性二层规划[J]. 中国科技论文在线精品论文,2010,3(1):28-33. |

请您登录
暂无评论