您的位置:首页 > 论文页面
一种求解约束优化问题的差分进化算法
发表时间:2010-04-30 浏览量:1835 下载量:865
全部作者: | 刘若辰,李勇,焦李成 |
作者单位: | 智能感知与图像理解教育部重点实验室,西安电子科技大学智能信息处理研究所 |
摘 要: | 基于差分进化(differential evolution,DE)算法的相关理论以及随机排序约束处理方法,提出一种解决约束优化问题(constrained optimization problem,COP)的算法。该算法对种群进化采用随机保留次优解的策略,有效地提高了种群多样性。对13个标准测试问题的测试结果表明:与动态惩罚函数的进化算法、人工免疫响应约束进化策略、可行性规则的差分进化算法以及采用随机排序的进化策略相比,新算法在收敛速度和求解精度上均具有一定的优势。 |
关 键 词: | 人工智能;差分进化算法;约束优化;随机排序 |
Title: | A differential evolution algorithm for constrained optimization problem |
Author: | LIU Ruochen, LI Yong, JIAO Licheng |
Organization: | Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Institute of Intelligent Information Processing, Xidian University |
Abstract: | Based on differential evolution and stochastic ranking strategy, a differential evolution algorithm for constrained optimization problem is proposed in this paper. The proposed algorithm reserves sub-optimal solutions in the process of population evolution, which effectively enhances the diversity of the population. The experiment results on 13 well-known benchmark problems show that the proposed algorithm is capable of improving the search performance significantly in convergent speed and precision with respect to four techniques representative of the state-of-the-art in constrained optimization such as evolutionary algorithm based on homomorphous maps, artificial immune response constrained evolutionary strategy, constraint handling differential evolution, and evolutionary strategies based on stochastic ranking. |
Key words: | artificial intelligent; differential evolution algorithm; constrained optimization; stochastic ranking |
发表期数: | 2010年4月第8期 |
引用格式: | 刘若辰,李勇,焦李成. 一种求解约束优化问题的差分进化算法[J]. 中国科技论文在线精品论文,2010,3(8):830-837. |
0
评论数 0
请您登录
暂无评论