您的位置:首页  > 论文页面

双三次调和Bézier曲面间的连续性条件

发表时间:2014-07-15  浏览量:1960  下载量:512
全部作者: 倪倩,王旭辉
作者单位: 合肥工业大学数学学院
摘 要: 主要研究两双三次调和Bézier曲面C1连续时,其控制顶点之间的关系。结果表明:当两双三次调和Bézier曲面在公共边界上C1连续时,两双三次调和Bézier曲面片来自于同一张曲面。进而可得:当两双三次调和Bézier曲面在公共边界上Cr连续时,两双三次调和Bézier曲面片亦来自于同一张曲面。
关 键 词: 计算数学;双三次调和Bézier曲面;连续性条件;控制点
Title: Continuity condition for bicubic harmonic B閦ier surfaces
Author: NI Qian, WANG Xuhui
Organization: School of Mathematics, Hefei University of Technology
Abstract: This paper mainly studies the relationship between control points when the two corresponding bicubic harmonic B閦ier surfaces are C1 continuous. The results show that when the two bicubic harmonic B閦ier surfaces are C1 continuous at the common boundary, the two bicubic harmonic B閦ier surface patches are from the same piece of surface. Moreover, when the Cr continuity condition are satisfied at the common boundary for the two bicubic harmonic B閦ier surfaces, it implies that the two bicubic harmonic B閦ier surface patches are also derived from the same piece of surface.
Key words: computational mathematics; bicubic harmonic B閦ier surface; continuity condition; control point
发表期数: 2014年7月第13期
引用格式: 倪倩,王旭辉. 双三次调和Bézier曲面间的连续性条件[J]. 中国科技论文在线精品论文,2014,7(13):1282-1286.
 
1 评论数 0
暂无评论
友情链接