您的位置:首页 > 论文页面
一维链上量子随机行走演化算符的本征值和本征态
发表时间:2017-01-15 浏览量:2019 下载量:669
全部作者: | 王越,徐新平 |
作者单位: | 苏州大学物理科学与技术学院 |
摘 要: | 利用切比雪夫多项式(Chebyshev polynomial)方法,首次推导了一维链上离散时间量子随机行走演化算符的本征值和本征态。计算结果表明,演化算符的本征值与第二类切比雪夫多项式有关。计算结果为定量分析离散时间量子随机行走在一维链上的动力学性质奠定了基础。 |
关 键 词: | 理论物理学;统计物理;量子物理;量子随机行走;复杂网络 |
Title: | Eigenvalues and eigenstates of the evolution operator of quantum random walk on 1D chain |
Author: | WANG Yue, XU Xinping |
Organization: | School of Physics and Technology, Soochow University |
Abstract: | Using the Chebyshev polynomial method, we derive the eigenvalues and eigenstates of the evolution operator of the discrete-time quantum random walk on 1D chain for the first time. It is found that the eigenvalues of the evolution operator are closely related to the Chebyshev polynomial of the second kind. The results presented in this paper are important to quantatively analyze the dynamical properties of discrete-time quantum random walk on 1D chain. |
Key words: | theoretical physics; statistical physics; quantum physics; quantum random walk; complex network |
发表期数: | 2017年1月第1期 |
引用格式: | 王越,徐新平. 一维链上量子随机行走演化算符的本征值和本征态[J]. 中国科技论文在线精品论文,2017,10(1):35-40. |
1
评论数 0
请您登录
暂无评论