您的位置:首页  > 论文页面

结构二次幂零矩阵迭代法的并行计算

发表时间:2018-04-13  浏览量:1586  下载量:205
全部作者: 张承平
作者单位: 海南热带海洋学院海洋信息工程学院
摘 要: 针对Laplace方程五点差分格式插入69个点得到的线性方程组,将其进行标准化处理,构造结构二次幂零矩阵迭代法。采用Matlab软件,通过 CPU 编程以及调用GPU并行工具箱编程对比,同时与高斯赛德尔迭代法进行对比。数值实验表明,结构二次幂零矩阵迭代法CPU计算耗时达到GPU计算耗时的14倍以上,而高斯赛德尔迭代法CPU耗时达到结构二次幂零矩阵迭代法CPU计算耗时的2倍以上,说明结构二次幂零矩阵迭代法具有良好的并行性,非常适合大规模的并行编程,尤其采用GPU进行计算能节省大量时间,非常适合GPU并行编程计算。
关 键 词: 计算数学;线性方程组;结构二次幂零矩阵;并行迭代法;Laplace方程;五点差分格式
Title: Parallel computation of iterative methods on structural 2-nilpotent matrices
Author: ZHANG Chengping
Organization: School of Marine Information and Engineering, Hainan Tropical Ocean College
Abstract: In this paper, the linear equations Laplace equation of the five point difference scheme inserted into the 69 points are normalized. And the structural 2-nilpotent matrices are structured using Matlab software with CPU programming and calling parallel GPU toolbox. The structural 2-nilpotent matrices iterative method is compared with Gauss Seidel iterative method. Mathematical experiment shows that the computing time of the structural 2-nilpotent matrices iterative method by CPU is 14 times more than that by GPU. And the computing time of the Gauss-Seidel iterative method by CPU is 2 times more than that of the structural 2-nilpotent matrices iterative method by CPU. It shows that the structural 2-nilpotent matrices iterative method has good parallelism and is very suitable for parallel programming in large scale, especially combined with GPU, the method can save a lot of time. So the method is very suitable for GPU parallel programming computation.
Key words: computational mathematics; linear equations; structural 2-nilpotent matrix; parallel iterative method; Laplace equation; five points difference scheme
发表期数: 2018年4月第7期
引用格式: 张承平. 结构二次幂零矩阵迭代法的并行计算[J]. 中国科技论文在线精品论文,2018,11(7):698-704.
 
2 评论数 0
暂无评论
友情链接