您的位置:首页 > 论文页面
基于深度强化学习的基站休眠控制算法
发表时间:2023-06-30 浏览量:1253 下载量:80
全部作者: | 杨馥瑜,赵东 |
作者单位: | 北京邮电大学计算机学院 |
摘 要: | 本文提出了一种基站休眠控制框架,首先使用一种基于时空图神经网络的移动流量预测技术,利用历史数据对基站未来一段时间的负载情况进行预测。然后设计一种基于深度强化学习的基站休眠控制算法,该算法综合考虑多种实际约束,基于预测结果优化资源分配,在提高网络能效的同时保证稳定的用户体验。真实数据集上的广泛实验证实了该框架的优越性。 |
关 键 词: | 人工智能;时空预测;基站休眠;深度强化学习 |
Title: | Base station sleep control algorithm based on deep reinforcement learning |
Author: | YANG Fuyu, ZHAO Dong |
Organization: | School of Computer Science, Beijing University of Posts and Telecommunications |
Abstract: | This paper proposes a base station sleep control framework. Firstly, a mobile traffic prediction technology based on neural network of spatio-temporal graph was used to predict the loads of base stations in future time by using historical data. Then, a base station sleep control algorithm based on deep reinforcement learning was proposed, which took a variety of practical constraints into consideration and optimized resource allocation based on the prediction results, so as to improve the network energy efficiency and ensure stable user experience. Extensive experiments with a real-world dataset prove the advantage of this framework. |
Key words: | artificial intelligence; spatio-temporal prediction; base station sleep; deep reinforcement learning |
发表期数: | 2023年6月第2期 |
引用格式: | 杨馥瑜,赵东. 基于深度强化学习的基站休眠控制算法[J]. 中国科技论文在线精品论文,2023,16(2):170-178. |

请您登录
暂无评论