您的位置:首页 > 论文页面
新冠Omicron变异株的人群感染数学模型研究
发表时间:2024-03-29 浏览量:198 下载量:44
全部作者: | 桑晓倩,林孟晨,鲍贵栋,吴云峰 |
作者单位: | 厦门大学信息学院 |
摘 要: | 本文建立了可预测Omicron变异株对社会人群感染的数学模型,通过模型参数描述了Omicron变异株的免疫逃逸特性,并采用下一代矩阵方法计算了模型的基本再生数,随后根据常微分方程的驻点稳定性理论分析,得出该模型的流行病稳态驻点解是全局渐进稳定的结论。本文依据国家卫健委发布的疫情数据和厦门市的人口普查数据,对模型各参数进行赋值,仿真模拟了厦门市在2022年12月至2023年7月期间的社会人群新冠病毒感染趋势,为政府相关部门优化疫情防控策略提供数学模型技术支持。 |
关 键 词: | 传染病学;基本再生数;新型冠状病毒;稳定性理论 |
Title: | Human infection model with the SARS-CoV-2 Omicron variant |
Author: | SANG Xiaoqian, LIN Mengchen, BAO Guidong, WU Yunfeng |
Organization: | School of Informatics, Xiamen University |
Abstract: | This paper proposed a mathematical model to predict the infection of Omicron variant to social population. The model parameters can be used to characterize the immune escape property of Omicron variant, and the basic reproductive ratio can be computed by the next-generation matrix method. According to the stability theory of ordinary differential equations, it was concluded that epidemic stationary point of the model is globally progressive stable. Based on the public epidemic data released by the National Health Commission and the population census data of Xiamen, the model parameters were assigned and used to predict the trends of the COVID-19 infection in Xiamen from December 2022 to July 2023. The study provides the mathematical model technical supports for the local government departments to optimize the epidemic prevention and control strategies. |
Key words: | lemology; basic reproductive ratio; SARS-CoV-2; stability theory |
发表期数: | 2024年3月第1期 |
引用格式: | 桑晓倩,林孟晨,鲍贵栋,等. 新冠Omicron变异株的人群感染数学模型研究[J]. 中国科技论文在线精品论文,2024,17(1):91-98. |

请您登录
暂无评论