您的位置:首页 > 论文页面
基于CNN-LSTM的原煤产量预测模型
发表时间:2024-06-28 浏览量:53 下载量:10
全部作者: | 张天宇,王淼馨,张正和,王泽霖,刘海涛 |
作者单位: | 辽宁工程技术大学安全科学与工程学院;辽宁工程技术大学理学院 |
摘 要: | 为了准确地预测原煤产量,本文选择结合卷积神经网络(convolutional neural network,CNN)与长短期记忆网络(long short-term memory,L-STM)算法,建立基于CNN-LSTM的原煤产量预测模型。使用2010年1月至2021年12月中国原煤产量的月度数据作为训练集,2022年1月至2022年12月的数据作为检验集。利用训练后的模型预测2023年1月至2023年12月的原煤产量。通过与其他两种单一模型进行对比,并根据绝对相对误差评估模型预测结果。结果表明:CNN-LSTM模型的原煤产量预测结果与实际值的绝对最大误差为4.98%,预测精度显著提高,得到了2023年一整年的月度原煤产量预测结果,为国家未来发展和企业规划提供了科学的指导依据。 |
关 键 词: | 安全工程;原煤产量预测;CNN-LSTM;绝对相对误差;预测精度 |
Title: | Raw coal production prediction model based on CNN-LSTM |
Author: | ZHANG Tianyu, WANG Miaoxin, ZHANG Zhenghe, WANG Zelin, LIU Haitao |
Organization: | College of Safe Science and Engineering, Liaoning Technical University; College of Science, Liaoning Technical University |
Abstract: | To accurately predict raw coal production, this paper chooses to combine convolutional neural network (CNN) and long short-term memory (LSTM) algorithms to establish a raw coal production prediction model based on CNN-LSTM. Monthly data on China’s raw coal production from January 2010 to December 2021 are used as the training set, and data from January 2022 to December 2022 are used as the test set. The raw coal production from January 2023 to December 2023 was predicted using the trained model. The model predictions are evaluated by comparing them with two other single models and based on the absolute relative error. The results show that the absolute maximum error between the raw coal production prediction results of the CNN-LSTM model and the actual value is 4.98%, the prediction accuracy is significantly improved, and the monthly raw coal production prediction results for the whole year of 2023 are obtained, which provides a scientific guiding basis for the future development of the country and enterprise planning. |
Key words: | safety engineering; forecast of raw coal production; CNN-LSTM; absolute relative error; prediction accuracy |
发表期数: | 2024年6月第2期 |
引用格式: | 张天宇,王淼馨,张正和,等. 基于CNN-LSTM的原煤产量预测模型[J]. 中国科技论文在线精品论文,2024,17(2):276-282. |
0
评论数 0
请您登录
暂无评论