您的位置:首页 > 论文页面
最佳体操阵容问题的探究
发表时间:2009-07-15 浏览量:2211 下载量:938
全部作者: | 刘萍,王晓峰 |
作者单位: | 武汉大学数学与统计学院 |
摘 要: | 以女子体操团体赛为模型对最佳阵容问题进行了分析讨论。首先,通过对该模型中不同问题的分析,找出目标函数和约束条件,建立相应的0~1规划模型。应用Lingo数学软件进行计算,得出在几种不同情况下该团队的最佳出场阵容。其次,在已知夺冠最低分、为该团队排出最佳出场阵容问题的求解过程中,建立了两级目标函数:第一级目标函数为“团队夺冠的概率最大”;第二级目标函数为“团体得分最高”。在模型求解时,通过对2个目标函数进行加权求和,从而将多目标规划的数学模型转化为单目标规划的妥协模型,方便求解计算。最后,综合考虑概率和得分2因素,对问题进行分析,得出了最佳阵容问题的求解。 |
关 键 词: | 计算数学;最佳阵容问题;0~1规划;最优解 |
Title: | The research of the optimal gym lineup problem |
Author: | LIU Ping, WANG Xiaofeng |
Organization: | School of Mathematics and Statistics, Wuhan University |
Abstract: | This paper takes women’s gym team competition as a model to discuss and analyze the optimal lineup problem. After analyzing different problems in this model, it gives objective functions and restrict conditions, and establishes the corresponding 0~1 programming model. Lingo mathematics software is used to compute and obtain the optimal lineup of this team for several different cases. In this mathematical model, two objective functions are established: the first-class objective function is “the greatest probability of the team winning”, while the second-class objective function is “the team winning the highest scores”. In order to facilitate the solution and computation, two objective functions are summed up in a weighted manner to turn a multi-objective programming model into a single-objective programming compromise model. Finally, both of the factors are considered in analysis, and the solution of optimal lineup problem is obtained. |
Key words: | computational mathematics; optimal lineup problem; 0~1 programming; optimal solution |
发表期数: | 2009年7月第13期 |
引用格式: | 刘萍,王晓峰. 最佳体操阵容问题的探究[J]. 中国科技论文在线精品论文,2009,2(13):1366-1372. |

请您登录
暂无评论