您的位置:首页  > 论文页面

人工神经网络在油藏埋存CO2效果预测中的应用

发表时间:2011-09-30  浏览量:1087  下载量:462
全部作者: 王涛
作者单位: 中海油田服务股份有限公司
摘 要: 针对常规预测方法的效率和精度不高的问题,编写了BP神经网络的方法并且引入影响埋存效果的5个无因次变量,对于这种非线性、不确定的多变量系统进行预测。结果表明:人工神经网络方法具有更好的自适应性,能较好地反映各种影响因素与埋存系数的内在联系,而且预测精度较高。因此认为应用BP神经网络方法评价油藏埋存CO2能力是可行的、有效的。
关 键 词: 石油、天然气能;人工神经网络;CO2埋存;效果评价
Title: Application of artificial neural network in forecast of CO2 storage in reservoir
Author: WANG Tao
Organization: China Oilfield Services Co., Ltd.
Abstract: This paper introduces BP artificial neural network and five dimensionless variables influencing the storage effect to forecast storage effect of multivariable system with nonlinearity and uncertainty. The result shows that BP neural network is a better self-adaptive method which can automatically adapt and reflect internal relations between the influence factors and storage and have high prediction accuracy. The BP artificial neural network is applicable and effective in evaluating the capability of oil deposit in storing CO2.
Key words: oil-gas energy; artificial neural network; carbon dioxide storage; effect evaluation
发表期数: 2011年9月第18期
引用格式: 王涛. 人工神经网络在油藏埋存CO2效果预测中的应用[J]. 中国科技论文在线精品论文,2011,4(18):1641-1645.
 
0 评论数 0
暂无评论
友情链接