您的位置:首页  > 论文页面

基于就业信息服务的个性化推荐系统设计与应用

发表时间:2015-08-31  浏览量:1961  下载量:577
全部作者: 潘昊,郑苗,杨俊
作者单位: 北京邮电大学计算机学院
摘 要: 利用就业信息数据,提出一种将用户对职位的历史操作信息转化为用户兴趣度的评分模型。该模型把求职用户的行为分为点击、收藏、申请3 种不同的类型,并将用户行为发生的时间融入用户相似性计算中。对于时间上下文的使用,采用一种时间衰减策略。在该数据模型的基础上,实现一个基于用户的协同过滤的推荐系统,并验证了模型的有效性。
关 键 词: 人工智能;推荐系统;协同过滤;时间上下文
Title: Design and application of personalized recommendation system based on employment information service
Author: PAN Hao, ZHENG Miao, YANG Jun
Organization: School of Computer Science, Beijing University of Posts and Telecommunications
Abstract: In this paper, employment information data is used to propose a rating model which turns users’ history behavior on job positions into users’ interest. This model divides users’ behavior into three types: click, collect and apply, and integrate time when users’ behavior happened into similarity calculating. For the use of time context, a time reduction strategy is used. Based on this data model, a user-based collaborative filtering recommendation system is implemented and its effectiveness is tested.
Key words: artificial intelligence; recommendation system; collaborative filtering; time context
发表期数: 2015年8月第16期
引用格式: 潘昊,郑苗,杨俊. 基于就业信息服务的个性化推荐系统设计与应用[J]. 中国科技论文在线精品论文,2015,8(16):1709-1714.
 
0 评论数 0
暂无评论
友情链接