您的位置:首页 > 论文页面
解一类高阶变系数时滞微分系统的新型算法
发表时间:2009-07-15 浏览量:2031 下载量:821
全部作者: | 吴树荣,张国凤,丁恒飞 |
作者单位: | 兰州大学数学与统计学院 |
摘 要: | 利用Chebyshev多项式与Taylor多项式相组合的方法,提出了一种求解高阶变系数时滞微分系统的新型数值算法。其构造思想是利用Chebyshev级数与Taylor级数逼近,把微分方程系统近似转化为矩阵方程系统,并利用Chebyshev配置方法,得到一个与原微分系统相关的关于Chebyshev系数的线性代数方程系统。最后通过一些数值例子验证了新算法的有效性。 |
关 键 词: | 常微分方程;Chebyshev多项式;Taylor多项式;Chebyshev配置方法;时滞微分系统 |
Title: | A new method for solving high-order linear delay Fredholm-Volterra integro-differential equations with variable cofficients |
Author: | WU Shurong, ZHANG Guofeng, DING Hengfei |
Organization: | School of Mathematics and Statistics, Lanzhou University |
Abstract: | In this paper, by means of the matrix relation between the Taylor and Chebyshev polynomials, the mentioned methods above are modified and developed in order to solve the systems of higher-order delay differential equations. This method transforms the integro-differential equations (IDE) system and the given conditions into the matrix equations by using the Chebyshev collocation method. By merging these results, a new system which corresponds to a system of linear algebraic equations is obtained. In addition, examples are presented to illustrate the pertinent features of the method and the results are discussed. |
Key words: | ordinary differential equations; Chebyshev polynomials; Taylor polynomials; Chebyshev collocation method; delay differential system |
发表期数: | 2009年7月第13期 |
引用格式: | 吴树荣,张国凤,丁恒飞. 解一类高阶变系数时滞微分系统的新型算法[J]. 中国科技论文在线精品论文,2009,2(13):1322-1328. |

请您登录
暂无评论