您的位置:首页  > 论文页面

莱维飞行中的轨线动力学

发表时间:2017-07-13  浏览量:2380  下载量:770
全部作者: 孙兆鹏,郑雨军
作者单位: 山东大学物理学院; 鲁东大学物理与光电工程学院
摘 要: 莱维飞行是一种随机行走过程,由于在这一过程中存在非常大的跳跃事件,莱维飞行的概率密度分布表现出长尾分布的特性。本文介绍一种新的理论研究方法——纠缠轨线方法。该方法基于核密度估计原理,用有限数量的取样点估计概率密度函数,具有算法简单、计算高效、易于向多维度扩展的优点。研究将以自由莱维飞行和四次柯西振子势中的莱维飞行为例展示该方法并探讨莱维飞行特性。计算结果与精确解符合较好。
关 键 词: 统计物理学;莱维飞行;反常扩散;纠缠轨线
Title: Trajectory dynamics for Lévy flight
Author: SUN Zhaopeng, ZHENG Yujun
Organization: School of Physics, Shandong University; School of Physics and Optoelectronic Engineering, Ludong University
Abstract: Lévy flight is a random walk process that is characterized by the occurrence of extremely long jumps in which show a long-tailed probability distribution. In this paper, a new method called entangled trajectory is introduced to understand the Lévy flight behaviors. This method is based on the kernel density estimation and represents the probability density function by a finite number of sampling points. It has several merits such as simple in algorithm, high efficiency for computation and it is easily extended to multidimensional system. Two cases of Lévy stable processes, the free Lévy flight of a Cauchy quartic potential are presented and discussed. The entangled trajectory results are in good agreement with the exact solutions.
Key words: statistical physics; Lévy flight; anomalous diffusion; entangled trajectory
发表期数: 2017年7月第13期
引用格式: 孙兆鹏,郑雨军. 莱维飞行中的轨线动力学[J]. 中国科技论文在线精品论文,2017,10(13):1519-1524.
 
5 评论数 0
暂无评论
友情链接