您的位置:首页 > 论文页面
Caputo分数阶导数的一种二阶逼近方法
发表时间:2012-07-15 浏览量:3040 下载量:1314
全部作者: | 黄凤辉 |
作者单位: | 华南理工大学理学院 |
摘 要: | 根据Riemann-Liouville分数阶积分的一种二阶精度的逼近方法,导出求解Caputo分数阶导数的一种二阶方法。该方法可以看作是一阶导数二阶精度的三点公式的推广。最后给出2个数值例子,验证了方法的有效性及其收敛精度。 |
关 键 词: | 偏微分方程数值解;Caputo分数阶导数;Riemann-Liouville分数阶积分 |
Title: | A second-order accurate numerical approximation for Caputo fractional derivatives |
Author: | HUANG Fenghui |
Organization: | School of Sciences, South China University of Technology |
Abstract: | This paper proposes a second-order accurate algorithm for Caputo fractional derivative based on the numerical algorithm for the fractional Riemann-Liouville integration. The method can be considered the generalization of the three points formula for the first-order derivative. Two numerical examples are given to illustrative the effectiveness and the convergence order of the method. |
Key words: | numerical solution of partial differential equations; Caputo fractional derivative; Riemann-Liouville fractional integral |
发表期数: | 2012年7月第13期 |
引用格式: | 黄凤辉. Caputo分数阶导数的一种二阶逼近方法[J]. 中国科技论文在线精品论文,2012,5(13):1205-1211. |

请您登录
暂无评论